579 research outputs found

    Resonant normal forms as constrained linear systems

    Full text link
    We show that a nonlinear dynamical system in Poincare'-Dulac normal form (in Rn\R^n) can be seen as a constrained linear system; the constraints are given by the resonance conditions satisfied by the spectrum of (the linear part of) the system and identify a naturally invariant manifold for the flow of the ``parent'' linear system. The parent system is finite dimensional if the spectrum satisfies only a finite number of resonance conditions, as implied e.g. by the Poincare' condition. In this case our result can be used to integrate resonant normal forms, and sheds light on the geometry behind the classical integration method of Horn, Lyapounov and Dulac.Comment: 15 pages; revised version (with revised title

    Multi-Phase Patterns in Periodically Forced Oscillatory Systems

    Full text link
    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of π/2\pi/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: π\pi-fronts separating states with a phase shift of π\pi and π/2\pi/2-fronts separating states with a phase shift of π/2\pi/2. We find a new type of front instability where a stationary π\pi-front ``decomposes'' into a pair of traveling π/2\pi/2-fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of π/2\pi/2-fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,..) where stationary π\pi-fronts decompose into n traveling π/n\pi/n-fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased

    On the Origin of Traveling Pulses in Bistable Systems

    Full text link
    The interaction between a pair of Bloch fronts forming a traveling domain in a bistable medium is studied. A parameter range beyond the nonequilibrium Ising-Bloch bifurcation is found where traveling domains collapse. Only beyond a second threshold the repulsive front interactions become strong enough to balance attractive interactions and asymmetries in front speeds, and form stable traveling pulses. The analysis is carried out for the forced complex Ginzburg-Landau equation. Similar qualitative behavior is found in the bistable FitzHugh-Nagumo model.Comment: 5 pages, RevTeX. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    A Phase Front Instability in Periodically Forced Oscillatory Systems

    Full text link
    Multiplicity of phase states within frequency locked bands in periodically forced oscillatory systems may give rise to front structures separating states with different phases. A new front instability is found within bands where ωforcing/ωsystem=2n\omega_{forcing}/\omega_{system}=2n (n>1n>1). Stationary fronts shifting the oscillation phase by π\pi lose stability below a critical forcing strength and decompose into nn traveling fronts each shifting the phase by π/n\pi/n. The instability designates a transition from stationary two-phase patterns to traveling nn-phase patterns

    The evolution and comparative neurobiology of endocannabinoid signalling

    Get PDF
    CB(1)- and CB(2)-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB(1)-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB(1)/CB(2)-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB(1)/CB(2)-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB(1)/CB(2)-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB(1)/CB(2)-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids

    Harmonic forcing of an extended oscillatory system: Homogeneous and periodic solutions

    Full text link
    In this paper we study the effect of external harmonic forcing on a one-dimensional oscillatory system described by the complex Ginzburg-Landau equation (CGLE). For a sufficiently large forcing amplitude, a homogeneous state with no spatial structure is observed. The state becomes unstable to a spatially periodic ``stripe'' state via a supercritical bifurcation as the forcing amplitude decreases. An approximate phase equation is derived, and an analytic solution for the stripe state is obtained, through which the asymmetric behavior of the stability border of the state is explained. The phase equation, in particular the analytic solution, is found to be very useful in understanding the stability borders of the homogeneous and stripe states of the forced CGLE.Comment: 6 pages, 4 figures, 2 column revtex format, to be published in Phys. Rev.

    Frozen spatial chaos induced by boundaries

    Get PDF
    We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit http://www.imedea.uib.es/~victo

    Poincare' normal forms and simple compact Lie groups

    Full text link
    We classify the possible behaviour of Poincar\'e-Dulac normal forms for dynamical systems in RnR^n with nonvanishing linear part and which are equivariant under (the fundamental representation of) all the simple compact Lie algebras and thus the corresponding simple compact Lie groups. The ``renormalized forms'' (in the sense of previous work by the author) of these systems is also discussed; in this way we are able to simplify the classification and moreover to analyze systems with zero linear part. We also briefly discuss the convergence of the normalizing transformations.Comment: 17 pages; minor corrections in revised versio

    Frequency Locking in Spatially Extended Systems

    Full text link
    A variant of the complex Ginzburg-Landau equation is used to investigate the frequency locking phenomena in spatially extended systems. With appropriate parameter values, a variety of frequency-locked patterns including flats, π\pi fronts, labyrinths and 2π/32\pi/3 fronts emerge. We show that in spatially extended systems, frequency locking can be enhanced or suppressed by diffusive coupling. Novel patterns such as chaotically bursting domains and target patterns are also observed during the transition to locking
    corecore